Calculate
\[
\sqrt{\phantom{XXXXXXXXXXXXX}}
\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!
\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!
\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!
{(\underbrace{111\ldots1}_{\mbox{$100$ $1$'s}})(1\underbrace{000\ldots0}_{\mbox{$99$ $0$'s}}5)+1} \,\,.
\]
Solution: We can write the expression inside the square root as
\[
\frac{1}{9}(10^{100}-1)(10^{100}+5)+1=\frac{(10^{100}+2)^2}{9}.
\]
Hence the answer is $(10^{100}+2)/3=\underbrace{3\ldots3}_{\mbox{$99$ $3$'s}}4$.
My math page: https://sites.google.com/site/martinerickson/
No comments:
Post a Comment